AskDefine | Define evaporate

Dictionary Definition



1 lose or cause to lose liquid by vaporization leaving a more concentrated residue; "evaporate milk" [syn: vaporize, vaporise]
2 cause to change into a vapor; "The chemist evaporated the water" [syn: vaporise]
3 change into a vapor; "The water evaporated in front of our eyes" [syn: vaporise]

User Contributed Dictionary



  • /ɪˈvapəreɪt/


  1. The transition from a liquid state into a gaseous state.




  1. Form of Second-person plural present tense, evaporare
  2. Form of Second-person plural imperative, evaporare#Italian|evaporare

Extensive Definition

expert-portal Physics
Evaporation is the process by which molecules in a liquid state (e.g. water) spontaneously become gaseous (e.g. water vapor). It is the opposite of condensation. Generally, evaporation can be seen by the gradual disappearance of a liquid when exposed to a significant volume of gas.
On average, the molecules do not have enough energy to escape from the liquid, or else the liquid would turn into vapor quickly. When the molecules collide, they transfer energy to each other in varying degrees, based on how they collide. Sometimes the transfer is so one-sided for a molecule near the surface that it ends up with enough energy to escape.
Liquids that do not evaporate visibly at a given temperature in a given gas (e.g. cooking oil at room temperature) have molecules that do not tend to transfer energy to each other in a pattern sufficient to frequently give a molecule the heat energy necessary to turn into vapor. However, these liquids are evaporating, it's just that the process is much slower and thus significantly less visible.
Evaporation is an essential part of the water cycle. Solar energy drives evaporation of water from oceans, lakes, moisture in the soil, and other sources of water. In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration.


see also Kinetic theory
For molecules of a liquid to evaporate, they must be located near the surface, be moving in the proper direction, and have sufficient kinetic energy to overcome liquid-phase intermolecular forces. Only a small proportion of the molecules meet these criteria, so the rate of evaporation is limited. Since the kinetic energy of a molecule is proportional to its temperature, evaporation proceeds more quickly at higher temperature. As the faster-moving molecules escape, the remaining molecules have lower average kinetic energy, and the temperature of the liquid thus decreases. This phenomenon is also called evaporative cooling. This is why evaporating sweat cools the human body. Evaporation also tends to proceed more quickly with higher flow rates between the gaseous and liquid phase and in liquids with higher vapor pressure. For example, laundry on a clothes line will dry (by evaporation) more rapidly on a windy day than on a still day.Three key parts to evaporation are heat, humidity and air movement.

Evaporative equilibrium

If evaporation takes place in a closed vessel, the escaping molecules accumulate as a vapor above the liquid. Many of the molecules return to the liquid, with returning molecules becoming more frequent as the density and pressure of the vapor increases. When the process of escape and return reaches an equilibrium, the vapor is said to be "saturated," and no further change in either vapor pressure and density or liquid temperature will occur. For a system consisting of vapor and liquid of a pure substance, this equilibrium state is directly related to the vapor pressure of the substance, as given by the Clausius-Clapeyron relation:
\ln \left( \frac \right) = - \frac \left( \frac - \frac \right)
where P1, P2 are the vapor pressures at temperatures T1, T2 respectively, ΔHvap is the enthalpy of vaporization, and R is the universal gas constant. The rate of evaporation in an open system is related to the vapor pressure found in a closed system. If a liquid is heated, when the vapor pressure reaches the ambient pressure the liquid will boil.
The ability for a molecule of a liquid to evaporate is largely based on the amount of kinetic energy an individual particle may possess. Even at lower temperatures, individual molecules of a liquid can potentially evaporate if they have more than the minimum amount of kinetic energy required for vaporization.

Factors influencing the rate of evaporation

  • Concentration of the substance evaporating in the air: If the air already has a high concentration of the substance evaporating, then the given substance will evaporate more slowly.
  • Concentration of other substances in the air: If the air is already saturated with other substances, it can have a lower capacity for the substance evaporating.
  • Flow rate of air: This is in part related to the concentration points above. If fresh air is moving over the substance all the time, then the concentration of the substance in the air is less likely to go up with time, thus encouraging faster evaporation. This is result of the boundary layer at the evaporation surface decreasing with flow velocity, decreasing the diffusion distance in the stagnant layer.
  • Concentration of other substances in the liquid (impurities): If the liquid contains other substances, it will have a lower capacity for evaporation.
  • Temperature of the substance: If the substance is hotter, then evaporation will be faster.
  • Inter-molecular forces: The stronger the forces keeping the molecules together in the liquid state, the more energy one must get to escape.
  • Surface area: A substance which has a larger surface area will evaporate faster as there are more surface molecules which are able to escape.
  • Air pressure: If air pressure is lower, it is easier for molecules to escape. So in low-pressured environment evaporation is faster.
In the US, the National Weather Service measures the actual rate of evaporation from a standardized "pan" open water surface outdoors, at various locations nationwide. Others do likewise around the world. The US data is collected and compiled into an annual evaporation map. The measurements range from under 30 to over 120 inches per year. Formulas for calculating the rate of evaporation from a water surface such as a swimming pool of can be found here and here


When clothes are hung on a laundry line, even though the ambient temperature is below the boiling point of water, water evaporates. This is accelerated by factors such as low humidity, heat (from the sun), and wind. In a clothes dryer hot air is blown through the clothes, allowing water to evaporate very rapidly.

Combustion vaporization

Fuel droplets vaporize as they receive heat by mixing with the hot gases in the combustion chamber. Heat (energy) can also be received by radiation from any hot refractory wall of the combustion chamber.

Film deposition

Thin films may be deposited by evaporating a substance and condensing it onto a substrate.


  • Semiconductor Devices: Physics and Technology Has an especially detailed discussion of film deposition by evaporation.

External links

evaporate in Afrikaans: Verdamping
evaporate in Arabic: تبخر
evaporate in Bosnian: Isparavanje
evaporate in Bulgarian: Изпарение
evaporate in Catalan: Evaporació
evaporate in Czech: Vypařování
evaporate in Danish: Evaporation
evaporate in German: Verdunstung
evaporate in Estonian: Aurumine
evaporate in Modern Greek (1453-): Εξάτμιση
evaporate in Spanish: Evaporación (proceso físico)
evaporate in Esperanto: Vaporado
evaporate in Persian: تبخیر
evaporate in French: Évaporation
evaporate in Galician: Evaporación
evaporate in Korean: 증발
evaporate in Indonesian: Penguapan
evaporate in Italian: Evaporazione
evaporate in Hebrew: התאיידות
evaporate in Swahili (macrolanguage): Uvukizaji
evaporate in Latvian: Iztvaikošana
evaporate in Lithuanian: Garavimas
evaporate in Dutch: Verdamping
evaporate in Japanese: 蒸発
evaporate in Norwegian: Fordampning
evaporate in Norwegian Nynorsk: Fordamping
evaporate in Polish: Parowanie
evaporate in Portuguese: Evaporação
evaporate in Romanian: Evaporare
evaporate in Russian: Испарение
evaporate in Simple English: Evaporation
evaporate in Slovak: Vyparovanie
evaporate in Slovenian: Izhlapevanje
evaporate in Finnish: Haihtuminen
evaporate in Swedish: Avdunstning
evaporate in Chinese: 蒸发

Synonyms, Antonyms and Related Words

aerate, aerify, air-dry, anhydrate, atomize, attenuate, bake, be annihilated, be consumed, be destroyed, be gone, be no more, be wiped out, blast-freeze, blot, blow off, brine, brush, burn, carbonate, cast forth, cease, cease to be, cease to exist, chlorinate, clear, clear away, corn, cure, dehumidify, dehydrate, dematerialize, depart, desiccate, die, die away, die out, dilute, disappear, dispel, disperse, dissipate, dissolve, distill, do a fade-out, drain, drive away, dry, dry-cure, dry-salt, dwindle, embalm, emit, erode, escape, etherify, etherize, evanesce, exhale, exit, expire, exsiccate, fade, fade away, fade out, fire, flee, fleet, flit, fluidize, fly, fractionate, freeze, freeze-dry, fume, fumigate, gasify, give off, go, go away, hide, hydrogenate, insolate, irradiate, jerk, kiln, kipper, leave no trace, leave the scene, marinade, marinate, melt, melt away, melt like snow, mummify, oxygenate, parch, pass, pass away, pass off, pass out, perfume, perish, peter out, pickle, preservatize, quick-freeze, reek, refrigerate, retire from sight, rub, salt, scorch, sear, season, send out, shrivel, sink, sink away, smoke, smoke-cure, soak up, sponge, spray, steam, stuff, sublimate, sublime, suffer an eclipse, sun, sun-dry, swab, thin, thin out, torrefy, towel, vanish, vanish from sight, vaporize, volatilize, waste, waste away, weaken, wear away, weazen, wipe, wither, wizen
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1